Technical fine-tuning for enhanced performance

The new Porsche 911 GT3 is packed with technical highlights. During development, the engineers pursued one aim: to further enhance the performance of the high-performance sports car without compromising everyday usability.

The cooperation between the technicians from series development and the Motorsport department specialists played a significant role here. "When we have the same engineers who develop our race cars also working on the design of a new GT car for the road, that is the most direct technology transfer I can imagine," explains Andreas Preuninger, Director GT Model Line.

More than 160 hours of fine-tuning in the wind tunnel

The technological progress in the area of aerodynamics is particularly apparent. It is the first time that a suspended rear wing has been fitted on a Porsche series production car. Its swan-neck mounting is used in a similar form in the GT racing car 911 RSR and the one-make cup racing car 911 GT3 Cup. Since two aluminium brackets now hold the wing element from above, the airflow can pass undisturbed across the underside, which is aerodynamically more sensitive. This new design led to a reduction in the flow losses and increased the downforce and resulted in well-balanced negative lift conditions and many other detailed measures. "We developed the aerodynamics of the new 911 GT3 in around 700 simulations. We spent more than 160 hours fine-tuning the car in the wind tunnel," explains aerodynamics engineer Mathias Roll.

The new 911 GT3 in the wind tunnel

The angle of attack of the new rear wing can be set to four different positions. Correspondingly, the front diffusor can also be adjusted to four parts. "The new 911 GT3 generates 50 per cent more downforce than its predecessor at 200 km/h just in the ex-works setting. In the setting with maximum downforce, the increase is as much as over 150 per cent," adds Roll. Similarly to motor racing situations, the aerodynamic balance of the new 911 GT3 can be individually adapted to track conditions and individual driving style. "Not only are the components very similar to those used in our race cars, the development methods are also similar," explains the aerodynamics engineer. "In our ultra-modern wind tunnel in Weissach, we do not just drive straight ahead, we simulate every conceivable driving situation. We make the car roll, pitch and yaw in order to simulate the physical influences on the track."

High-revving engine with motorsport DNA